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We present the results of experimental investigations and give the 
rheological equation of state for the media which have been studied. 
A general equation of mechanics has been derived, and we present 
a solution for the problem of the motion (in a circular cylindrical 
tube) of liquids with variable rheologieat characteristics. 

We studied the rheoIogica l  p rope r t i e s  of po lymer  
sy s t ems  based on chlorosul fonated  polyethylene and 
po lys ty rene ,  in which mine ra l  p igments ,  cement ,  and 
s i m i l a r  addi t ives  s e r v e d  as f i l l e r s .  

To c a r r y  out our t e s t s ,  we devised  a specia l  t h e r -  
mos ta t ing  insulat ion in which the s tudies were  c a r r i e d  
out over  an e x t r e m e l y  extens ive  range of s t r a in  r a t e s  
under conditions of v i r tua l ly  uni form shea r  (4.5 �9 10-4_< 
_< e _< 2.2 .'10 t sec-1).  This yielded "flow c u r v e s "  for  
solut ions f i l led  with chlorosul fonated  polyethylene and 
po ly s t ry r ene  in s e v e r a l  solvents  with var ious  f i l l e r s ,  
as the t e m p e r a t u r e  was va r i ed .  

The resu l t ing  functional cu rves  for  the tangential  
shea r  s t r e s s  r e l a t i ve  to the s t r a i n - r a t e  gradient  show 
(Fig. 1) that in v i r tua l ly  e v e r y  case  the rheo log ica l  
behav ior  of the sys tem can be fully desc r ibed  by two 
equations of s ta te .  

For  s t r a i n - r a t e  gradient  values  e _< e 1, the t h e o l o g -  
ical  behav ior  of the sys tem is de sc r ibed  by a quas i -  
exponential  law 

�9 =~o+ke[e~-~l (~o>O, n < l ) .  (1) 

With values  of e >_ el, the rheo log ica l  curve  changes 
into a reg ion  of Viscoplast ic  flow which is desc r ibed  
by the equation 

T=Ts t-~e.  (2) 

Rheologieal  flow curves  that were  s i m i l a r  in na ture  
were  a lso  a t ta ined by Rebinder  [1], Mirzadzhanzade  
[2], et  al .  Volarovich  and Gutkin [3, 4] deal t  with the 
mot ion of a v i scop las t i c  sy s t em in cy l inders .  

F i r s t  we so lve  the p rob lem of the motion (in a 
cy l indr ica l  tube) of a sys tem which, in var ious  s e g -  
ments  of the c r o s s  sect ion,  is  de sc r ibed  by a va r i e t y  
of rheo log ica l  equations.  This is a new approach to 
the solut ion of the p rob lem and makes  it poss ib le  to 
de r ive  a s i m p l e r  solut ion for  the cases  in which the 
sys tem exper i ences  both l inea r  and angular  s t ra in ,  
and where  the solution of the d i f ferent ia l  equations 
of mot ion is  c a r r i e d  through to the in tegra t ion  of 
complex  nonl inear  equations [5]. For  example ,  with 
motion in a cone through a reg ion  subject  to a quas i -  
exponential  law, we can neglec t  the angular  d e f o r -  
mat ions  which a re  smal l  in this case  r e l a t i ve  to the 
l inear  s t r a ins .  However ,  in the v i seopIas t i c  flow r e -  

gion near  the walls ,  converse ly ,  the angular  s t ra ins  
exceed the l inear  deformat ions  substant ia l ly  and the 
l a t t e r  can now be neglec ted  in the solution of the p rob-  
lem.  This s i m p l i f i e s  the solution s ignif icant ly  and, as 
we can see  f rom the p rob lem of motion in a c i r c u l a r  
cy l indr ica l  tube (Fig. 2), the curve  showing the v e l o c -  
ity d is t r ibut ion  in this event  is in be t te r  a g r e e m e n t  
than those de r ived  exper imenta l ly .  

Having wr i t ten  Eq. (1) in t ensor  form,  and solving 
it s imul taneous ly  with the Cauchy equi l ibr ium equa-  
tion, we obtain a genera l  mechan ics  equation for  a 
quas i -exponent ia l  medium which, in orthogonal c u r -  
v i l inea r  coordinates ,  a s s u m e s  the fo rm 
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For  the v i seop las t i c  flow zone 
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Fig. 1. Rheological flow curves of polymer solutions with fillings 
(% N/m2: e, sec -~ }; a) 10 per cent solution of chlorosulfur poly- 
ethylene in xylene filled with cement; b) solution of polystyrene 
in xylene filled with pigments: 1) 16.67 per cent filler, 2) 28.58, 

3) 37.5, 4) 44.4, 5) 50 per cent, 6) without filler. 
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In solving the p rob lem of mot ion in a c i r c u l a r  
cyl indr ica l  tube, we p roceed  f rom the fact  that the 
s t r e a m l i n e s  a r e  s t ra igh t  and pa ra l l e l  to the cy l indr ica l  
axis .  In the cy l indr ica l  coord ina te  sys t em for an ax-  

i s y m m e t r i c  flow v r = 0, v ~  = 0, and v z = f ( r ) .  The 
components  of the s t r a i n r a t e  t ensor  a r e  thus the fo l -  
lowing: 

b ~ = 0 ;  % ~ = 0 ;  e ~ = 0 ;  ~ = 0 ;  

e = 0 ;  e~z= 1 av z 
~ 2 Or 

The continuity equation for the s t r a in  r a t e s  is thus 

sa t i s f ied  ident ical ly .  On this bas i s ,  we obtain 

ap 
- - c t ;  

oz 

I TO -- 2 h-- T + 2k (n-- I) h._2lj ahar e~," + 
+ 2 ( _ h _ + k h . _ , )  1 a ( r ~ . )  

" r Or + ~ = 0 .  
(5) 

Solution of Eq. (5) y ie lds  

vz = vo a( n + l ) 2k k " (6) 

The integrat ion constants  a r e  found f rom the fo l -  
lowing condit ions:  C 1 is found f r o m  the condition of 

equ i l ib r ium for  the flow co re ;  C 2 is found f r o m  the 
condition that when r = r0, v z = v0 = Vmax. 

Equation (6) co r responds  to the ve loc i ty  d i s t r i -  
bution in the reg ion  of quas i -exponent ia l  flow for  
va lues  of r _< r 1. When r t _< r _< R, the sys tem moves  
in the region of v i seop las t i c  flow. Having wr i t ten  Eq. 

(4) in p ro jec t ions  onto the axis of t he ' cy l ind r i ca l  co-  
ordinate  sys tem,  we obtain the fol lowing by solving 
the express ion  for  the ve loc i ty  in this zone: 

T0 
Vz. = (r - -  R) + (R ~ - -  r2), (7) 

C1 = 0, and C 2 is found f rom the condition of the ad-  
hesion of the sys t em to the nonmoving wall.  

The condition 2~rl/T 1 = p~rr~ yie lds  

2Tz 
rl - (8) 

Here  r ,  is the magnitude of the tangential  shear  s t r e s s  
which co r r e sponds  to the t r ans i t ion  of the mot ion f rom 
a quas i -exponent ia l  r e g i m e  into the reg ion  of v i s c o -  
p las t i c  flow, and this quantity is de t e rmined  e x p e r i -  
menta l ly .  

The condition that r = r l w h e n V  z = v  z gives  us 
the value of the m a x i m u m  veloc i ty  

_ 2kn ( T1 T o ) ~  +' "Co, A v 
Vo a (n + 1) k k + 

(9) 
X ( 2TI -- R) - k a  W(z (R2 - 4Tl)a ~ �9 

We can de t e rmine  the re la t ionship  between p r e s s u r e  
and flow ra te  f rom the condition of f l ow- ra t e  con- 

stancy: 

Q = ~ r~ Vo + 2~ vzrdr + 2~ S vz.rdr. (10) 
ro rl 

The resu l t s  of the solution show that when r 0 ~ 0, 
t he re  will  be th ree  zones with var ious  v e l o c i t y - d i s -  
t r ibut ion functions within the region of motion.  In the 

p 

Fig. 2. Plot of velocity distribution in circular 
cylindrical tube. 

f i r s t  zone--about  the ax i s - -we  have T _< 1-0. This zone 
moves  in the manner  of a sol id  and all of its points 
exhibit  ident ical  ve loci ty .  The re la t ionship  between 
the tangential  s t r e s s  and the s t r a in  ra te  is e x p r e s s e d  
for the second zone by Eq. (1). Here  we have a v e -  
loci ty  gradient ,  but it is smal l  in absolute  magnitude.  
In the th i rd  zone (the Bingham flow zone) the r e l a t i o n -  
ship between the tangential  s t r e s s  and the s t ra in  ra te  
is e x p r e s s e d  by Eq. (2). We will  find the g r ea t e s t  
tangential  s t r e s s e s  in this zone. 

NOTATION 

is the grad ien t  of the s t r a in  ra te  ; ~" is the tangential  
shea r  s t r e s s ;  To is the l imi t  shear  s t r e s s ;  ~ is the 
p las t i c  v i scos i ty ;  k and n a r e  the rheologiea l  con-  
s tants  ; h is the intensi ty of s t ra in  ra te  ; p is the hydro-  
s ta t ic  p r e s s u r e ,  a is the p i e z o m e t r i c  s lope;  H k is the 
sca le  fac to r ;  r is the rad ia l  coordinate ;  r0 is the r a -  
dius of the flow core ;  R is the tube rad ius ;  p is the 

densi ty;  I is the tube length. 

REFERENCES 

I. P. A. Rebinder, V. A. Fedotova, and Kh. 
Khodzhaeva, DAN SSSR, 170, no. 5, 1966. 

2. A. Kh. Mirzadzhanzade, A. A. Mirzoyan, and 
G. M. Devinyan, Hydraulics of Clay and Cement Solu- 
tions [in Russian], Izd. Nedra, 1966. 

3. M. P. Volarovich and A. N. Gutkin, Izv. AN 
SSSR, otd. tekhn, nauk, no. 9, 37, 1955. 

4. M. P. Volarovich and A. M. Gutkin, ZhTF, 16, 
321, 1946. 

5. A. Kh. Kim, Author's abstract of candidate's 
dissertation, BPI, Minsk, 1966. 

31 August 1967 Belo russ i an  Polytechnic  
Inst i tute,  Minsk 


