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We present the results of experimental investigations and give the
rheological equation of state for the media which have been studied.
A general equation of mechanics has been derived, and we present
a solution for the problem of the motion (in a circular cylindrical
tube) of liquids with variable rheological characteristics.

We studied the rheological properties of polymer
systems based on chlorosulfonated polyethylene and
polystyrene, in which mineral pigments, cement, and
similar additives served as fillers.

To carry out our tests, we devised a special ther-
mostating insulation in which the studies were carried
out over an extremely extensive range of strain rates
under conditions of virtually uniform shear (4.5 - 10~ =
=e =2.2 ~10! sec™!). This yielded "flow curves" for
solutions filled with chlorosulfonated polyethylene and
polystryrene in several solvents with various fillers,
as the temperature was varied.

The resulting functional curves for the tangential
shear stress relative to the strain-rate gradient show
(Fig. 1) that in virtually every case the rheological
behavior of the system can be fully described by two
equations of state.

For strain-rate gradient values e < e,, the rheolog-~
ical behavior of the system is described by a quasi-
exponential law

=1+ kelent] (1,20, n<<l). (1)

With values of e = e;, the rheological curve changes
into a region of Vviscoplastic flow which is described
by the equation

‘C=T<;-|~‘I']é. (2)

Rheological flow curves that were similar in nature
were also attained by Rebinder {1], Mirzadzhanzade
[2], et al. Volarovich and Gutkin {3, 4] dealt with the
motion of a viscoplastic system in cylinders.

First we solve the problem of the motion (in a
cylindrical tube) of a system which, in various seg-
ments of the cross section, is described by a variety
of rheological equations. This is a new approach to
the solution of the problem and makes it possible to
derive a simpler solution for the cases in which the
system experiences both linear and angular strain,
and where the solution of the differential equations
of motion is carried through to the integration of
complex nonlinear equations [5]. For example, with
motion in a cone through a region subject to a quasi-
exponential law, we can neglect the angular defor-
mations which are small in this case relative to the
linear strains. However, in the viscoplastic flow re-

gion near the walls, conversely, the angular strains
exceed the linear deformations substantially and the
latter can now be neglected in the solution of the prob-
lem. This simplifies the solution significantly and, as
we can see from the problem of motion in a circular
cylindrical tube (Fig. 2), the curve showing the veloc-
ity distribution in this event is in better agreement
than those derived experimentally.

Having written Eq. (1) in tensor form, and solving
it simultaneously with the Cauchy equilibrium equa-
tion, we obtain a general mechanies equation for a
quasi-exponential medium which, in orthogonal cur-
vilinear coordinates, assumes the form
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Fig. 1. Rheological flow curves of polymer solutions with fillings

(r, N/m% e, sec™'); a) 10 per cent solution of chlorosulfur poly-

ethylene in xylene filled with cement; b) solution of polystyrene

in xylene filled with pigments: 1) 16.67 per cent filler, 2) 28,58,
3) 37.5, 4) 44.4, 5) 50 per cent, 6) without filler,
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In solving the problem of motion in a circular
cylindrical tube, we proceed from the fact that the
streamlines are straight and parallel to the cylindrical
axis. In the cylindrical coordinate system for an ax-
isymmetric flow vy = 0, v =0, and v; = f(r). The
components of the strainrate tensor are thus the fol-
lowing:

6, =0; ego="0, £,=0; ¢,=0;

0 ey

The continuity equation for the strain rates is thus
satisfied identically. On this basis, we obtain
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Solution of Eq. (5) yields
2kn ar To \m !
V=0 ——e [ ——— — 2} 6)
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The integration constants are found from the fol-
lowing conditions: Cy is found from the condition of
equilibrium for the flow core; C; is found from the
condition that when r = ry, v, = Vg = Vypax.

Equation (6) corresponds to the velocity distri-
bution in the region of quasi-exponential flow for
values of r =ry. When r; =1 <R, the system moves
in the region of viscoplastic flow. Having written Eq.
(4) in projections onto the axis of the cylindrical co-
ordinate system, we obtain the following by solving
the expression for the veloeity in this zone:

To’

Uyr = (r—R)+
|

o 2 o 7
I (R?—19), (7)

Cy = 0, and C, is found from the condition of the ad-
hesion of the system to the nonmoving wall.
The condition 2nr,l7, = prr} yields

P 2’[’1
! o (8)

Here 14 is the magnitude of the tangential shear stress
which corresponds to the transition of the motion from
a quasi-exponential regime into the region of visco-
plastic flow, and this quantity is determined experi-
mentally.

The condition that r = ry when v, = vy, gives us
the value of the maximum velocity
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We can determine the relationship between pressure
and flow rate from the condition of flow-rate con-
stancy:

ry R
Q=mnriv,+2a S o,rdr -+ 2% S vyrdr. (10)
ro ry
The results of the solution show that when 1y # 0,

there will be three zones with various velocity-dis-
tribution functions within the region of motion. In the
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Fig. 2. Plot of velocity distribution in circular
cylindrical tube,

first zone—about the axis—we have T = 71¢. This zone
moves in the manner of a solid and all of its points
exhibit identical velocity. The relationship between
the tangential stress and the strain rate is expressed
for the second zone by Eq. (1). Here we have a ve-
locity gradient, but it is small in absolute magnitude.
In the third zone (the Bingham flow zone) the relation-
ship between the tangential stress and the strain rate
is expressed by Eq. (2). We will find the greatest
tangential stresses in this zone.

NOTATION

& is the gradient of the strainrate; 7 is the tangential
shear stress; 7y is the limit shear stress; n is the
plastic viscosity; k and n are the rheological con-
stants; h is the intensity of strain rate; p is the hydro-
static pressure, @ is the plezometric slope; Hy is the
scale factor; r is the radial coordinate; ry is the ra-
dius of the flow core; R is the tube radius; p is the
density; | is the tube length.
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